Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electron-beam-induced current and cathodoluminescence characterization of InGaAs strain-balanced multiquantum well photovoltaic cells

Identifieur interne : 001A59 ( Chine/Analysis ); précédent : 001A58; suivant : 001A60

Electron-beam-induced current and cathodoluminescence characterization of InGaAs strain-balanced multiquantum well photovoltaic cells

Auteurs : RBID : Pascal:03-0465392

Descripteurs français

English descriptors

Abstract

InxGa1-xAs/InyGa1-yAs strain-balanced quantum well cells (QWCs) have been shown to be beneficial for photovoltaic applications in particular to extend the light absorption edge of a single-junction cell toward the near infrared with a lower reduction of the open-circuit voltage compared to a single band-gap cell. The strain-balancing condition ensures that the multi-quantum well as a whole does not relax. However, if the mismatch between wells and barriers exceeds a critical limit, the structure becomes vulnerable to morphological or compositional fluctuations, which can lead to a local structural breakdown with the generation of extended defects of a completely different nature from misfit dislocations. In this work, we investigated a series of strain-balanced InGaAs QWCs grown on InP for thermophotovoltaic applications by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements. Despite being electrically active, these defects appear to have a minor impact on the dark current of the cells but cause a drop of the photocurrent at relatively low forward bias voltage. The higher carrier collection efficiency revealed both by EBIC and CL at the boundaries of the defects suggests that a notch in the valence band edge limits the collection of holes generated in the MQW and the energy states, induced by the defects inside the energy gap, assist the tunneling of holes through the notch. At zero bias, the overall reduction of the collection efficiency is of the order of a few percent but the rate of recombination of photogenerated carriers increases dramatically with increasing forward-bias voltage as the junction built-in field drops more rapidly where the density of in-gap states is higher. © 2003 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0465392

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electron-beam-induced current and cathodoluminescence characterization of InGaAs strain-balanced multiquantum well photovoltaic cells</title>
<author>
<name sortKey="Tundo, Stefania" uniqKey="Tundo S">Stefania Tundo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimenti Ingegneria dellInnovazione, Universita di Lecce, via Monteroni, 73100, Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimenti Ingegneria dellInnovazione, Universita di Lecce, via Monteroni, 73100, Lecce</wicri:regionArea>
<wicri:noRegion>Lecce</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>IQE Limited, Cardiff, Wales, United Kingdom</s1>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>IQE Limited, Cardiff, Wales</wicri:regionArea>
<wicri:noRegion>Wales</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China</s1>
</inist:fA14>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093</wicri:regionArea>
<wicri:noRegion>Nanjing 210093</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mazzer, Massimo" uniqKey="Mazzer M">Massimo Mazzer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>CNR-IMM, Sezione di Lecce, Univ. Campus, via Arnesano, 73100 Lecce, Italy</s1>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CNR-IMM, Sezione di Lecce, Univ. Campus, via Arnesano, 73100 Lecce</wicri:regionArea>
<wicri:noRegion>73100 Lecce</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ, United Kingdom</s1>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ</wicri:regionArea>
<wicri:noRegion>SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nasi, Lucia" uniqKey="Nasi L">Lucia Nasi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNR-IMEM Sezione di Parma, Parco Area delle Scienze 37/A, 43010 Fontanini-PR, Italy</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CNR-IMEM Sezione di Parma, Parco Area delle Scienze 37/A, 43010 Fontanini-PR</wicri:regionArea>
<wicri:noRegion>43010 Fontanini-PR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lazzarini, Laura" uniqKey="Lazzarini L">Laura Lazzarini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNR-IMEM Sezione di Parma, Parco Area delle Scienze 37/A, 43010 Fontanini-PR, Italy</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CNR-IMEM Sezione di Parma, Parco Area delle Scienze 37/A, 43010 Fontanini-PR</wicri:regionArea>
<wicri:noRegion>43010 Fontanini-PR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Salviati, Giancarlo" uniqKey="Salviati G">Giancarlo Salviati</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>CNR-IMEM Sezione di Parma, Parco Area delle Scienze 37/A, 43010 Fontanini-PR, Italy</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>CNR-IMEM Sezione di Parma, Parco Area delle Scienze 37/A, 43010 Fontanini-PR</wicri:regionArea>
<wicri:noRegion>43010 Fontanini-PR</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rohr, Carsten" uniqKey="Rohr C">Carsten Rohr</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ, United Kingdom</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ</wicri:regionArea>
<wicri:noRegion>SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abbott, Paul" uniqKey="Abbott P">Paul Abbott</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ, United Kingdom</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ</wicri:regionArea>
<wicri:noRegion>SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bushnell, David B" uniqKey="Bushnell D">David B. Bushnell</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ, United Kingdom</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ</wicri:regionArea>
<wicri:noRegion>SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barnham, Keith W J" uniqKey="Barnham K">Keith W. J. Barnham</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ, United Kingdom</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ</wicri:regionArea>
<wicri:noRegion>SW7 2AZ</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clarke, Graham" uniqKey="Clarke G">Graham Clarke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimenti Ingegneria dellInnovazione, Universita di Lecce, via Monteroni, 73100, Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimenti Ingegneria dellInnovazione, Universita di Lecce, via Monteroni, 73100, Lecce</wicri:regionArea>
<wicri:noRegion>Lecce</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Peng, Ruwen" uniqKey="Peng R">Ruwen Peng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Dipartimenti Ingegneria dellInnovazione, Universita di Lecce, via Monteroni, 73100, Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Dipartimenti Ingegneria dellInnovazione, Universita di Lecce, via Monteroni, 73100, Lecce</wicri:regionArea>
<wicri:noRegion>Lecce</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0465392</idno>
<date when="2003-11-15">2003-11-15</date>
<idno type="stanalyst">PASCAL 03-0465392 AIP</idno>
<idno type="RBID">Pascal:03-0465392</idno>
<idno type="wicri:Area/Main/Corpus">00C728</idno>
<idno type="wicri:Area/Main/Repository">00BE25</idno>
<idno type="wicri:Area/Chine/Extraction">001A59</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cathodoluminescence</term>
<term>Defect states</term>
<term>EBIC</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Internal stresses</term>
<term>Quantum well devices</term>
<term>Semiconductor quantum wells</term>
<term>Solar cells</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8460J</term>
<term>8535B</term>
<term>7867D</term>
<term>7363H</term>
<term>7860H</term>
<term>6865F</term>
<term>7321F</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Puits quantique semiconducteur</term>
<term>Dispositif puits quantique</term>
<term>Cathodoluminescence</term>
<term>Contrainte interne</term>
<term>Cellule solaire</term>
<term>EBIC</term>
<term>Effet tunnel</term>
<term>Etat défaut</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/In
<sub>y</sub>
Ga
<sub>1-y</sub>
As strain-balanced quantum well cells (QWCs) have been shown to be beneficial for photovoltaic applications in particular to extend the light absorption edge of a single-junction cell toward the near infrared with a lower reduction of the open-circuit voltage compared to a single band-gap cell. The strain-balancing condition ensures that the multi-quantum well as a whole does not relax. However, if the mismatch between wells and barriers exceeds a critical limit, the structure becomes vulnerable to morphological or compositional fluctuations, which can lead to a local structural breakdown with the generation of extended defects of a completely different nature from misfit dislocations. In this work, we investigated a series of strain-balanced InGaAs QWCs grown on InP for thermophotovoltaic applications by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements. Despite being electrically active, these defects appear to have a minor impact on the dark current of the cells but cause a drop of the photocurrent at relatively low forward bias voltage. The higher carrier collection efficiency revealed both by EBIC and CL at the boundaries of the defects suggests that a notch in the valence band edge limits the collection of holes generated in the MQW and the energy states, induced by the defects inside the energy gap, assist the tunneling of holes through the notch. At zero bias, the overall reduction of the collection efficiency is of the order of a few percent but the rate of recombination of photogenerated carriers increases dramatically with increasing forward-bias voltage as the junction built-in field drops more rapidly where the density of in-gap states is higher. © 2003 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>94</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electron-beam-induced current and cathodoluminescence characterization of InGaAs strain-balanced multiquantum well photovoltaic cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TUNDO (Stefania)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAZZER (Massimo)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NASI (Lucia)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LAZZARINI (Laura)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SALVIATI (Giancarlo)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ROHR (Carsten)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ABBOTT (Paul)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BUSHNELL (David B.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>BARNHAM (Keith W. J.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>CLARKE (Graham)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>PENG (Ruwen)</s1>
</fA11>
<fA14 i1="01">
<s1>Dipartimenti Ingegneria dellInnovazione, Universita di Lecce, via Monteroni, 73100, Lecce, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CNR-IMM, Sezione di Lecce, Univ. Campus, via Arnesano, 73100 Lecce, Italy</s1>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ, United Kingdom</s1>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>CNR-IMEM Sezione di Parma, Parco Area delle Scienze 37/A, 43010 Fontanini-PR, Italy</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Experimental Solid State Physics, Imperial College London, London, SW7 2AZ, United Kingdom</s1>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>IQE Limited, Cardiff, Wales, United Kingdom</s1>
</fA14>
<fA14 i1="07">
<s1>National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China</s1>
</fA14>
<fA20>
<s1>6341-6345</s1>
</fA20>
<fA21>
<s1>2003-11-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0465392</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In
<sub>x</sub>
Ga
<sub>1-x</sub>
As/In
<sub>y</sub>
Ga
<sub>1-y</sub>
As strain-balanced quantum well cells (QWCs) have been shown to be beneficial for photovoltaic applications in particular to extend the light absorption edge of a single-junction cell toward the near infrared with a lower reduction of the open-circuit voltage compared to a single band-gap cell. The strain-balancing condition ensures that the multi-quantum well as a whole does not relax. However, if the mismatch between wells and barriers exceeds a critical limit, the structure becomes vulnerable to morphological or compositional fluctuations, which can lead to a local structural breakdown with the generation of extended defects of a completely different nature from misfit dislocations. In this work, we investigated a series of strain-balanced InGaAs QWCs grown on InP for thermophotovoltaic applications by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements. Despite being electrically active, these defects appear to have a minor impact on the dark current of the cells but cause a drop of the photocurrent at relatively low forward bias voltage. The higher carrier collection efficiency revealed both by EBIC and CL at the boundaries of the defects suggests that a notch in the valence band edge limits the collection of holes generated in the MQW and the energy states, induced by the defects inside the energy gap, assist the tunneling of holes through the notch. At zero bias, the overall reduction of the collection efficiency is of the order of a few percent but the rate of recombination of photogenerated carriers increases dramatically with increasing forward-bias voltage as the junction built-in field drops more rapidly where the density of in-gap states is higher. © 2003 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C63H</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H60H</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70C21F</s0>
</fC02>
<fC02 i1="08" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8460J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8535B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7867D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7363H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7860H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>6865F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7321F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dispositif puits quantique</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quantum well devices</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Cathodoluminescence</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Cathodoluminescence</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Contrainte interne</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Internal stresses</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Cellule solaire</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Solar cells</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>EBIC</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>EBIC</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Effet tunnel</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Tunnel effect</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Etat défaut</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Defect states</s0>
</fC03>
<fN21>
<s1>315</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0344M000115</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 001A59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:03-0465392
   |texte=   Electron-beam-induced current and cathodoluminescence characterization of InGaAs strain-balanced multiquantum well photovoltaic cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024